

医药卫生类专业"互联网+"精品教材

主 编 陆晓雁 付菜花

有机化学

图书在版编目(CIP)数据

有机化学 / 陆晓雁, 付菜花主编. — 北京:北京出版社, 2016.8 (2024 重印)

ISBN 978-7-200-12354-8

I. ①有… Ⅱ. ①陆… ②付… Ⅲ. ①有机化学—教材 Ⅳ. ① 062

中国版本图书馆 CIP 数据核字(2016)第 191249号

有机化学

YOUJI HUAXUE

主 编: 陆晓雁 付菜花

出版:北京出版集团公司 北京出版 社

地 址:北京北三环中路6号

邮 编: 100120

网 址: www.bph.com.cn

总发行: 北京出版集团公司

经 销:新华书店

印 刷: 定州市新华印刷有限公司

版 次: 2016年8月第1版 2021年5月修订 2024年8月第5次印刷

开 本: 787毫米×1092毫米 1/16

印 张: 16

字 数: 280 千字

书 号: ISBN 978-7-200-12354-8

定 价: 46.00元

质量监督电话: 010-82685218 010-58572341 010-58572393

目 录

绪论		1
第一篇	烃——有机化合物的母体	11
第一章	开链烃	12
	第一节 烷烃	12
	第二节 不饱和链烃	21
第二章	闭链烃	33
	第一节 脂环烃	33
	第二节 芳香烃	38
第二篇	烃的衍生物	51
第三章	卤代烃	52
第四章	醇、酚、醚	61
	第一节 醇	61
	第二节 酚	71
	第三节 醚	78
第五章	醛和酮	85
第六章	羧酸、取代羧酸	99
	第一节 羧酸	99
	第二节 取代羧酸	106
第七章	羧酸衍生物	117
第八章	胺	128
第九章	杂环化合物和生物碱	140
	第一节 杂环化合物	140
	第二节 生物碱	149

第三篇	立体化	2学基础	157
第十章	立体化	2学基础	158
	第一节	顺反异构	158
	第二节	构象异构	162
	第三节	对映异构	165
第四篇	生命的	D基础物质	179
第十一章	糖类		180
	第一节	单糖	181
	第二节	二糖	189
	第三节	多糖	191
第十二章	脂类	E、甾族和萜类	199
	第一节	油脂	199
	第二节	类脂	205
	第三节	甾族化合物	208
	第四节	萜类	213
第十三章	氨基	酸和蛋白质	220
	第一节	氨基酸	220
	第二节	蛋白质	227
附录			236
	附录1	有机化学实验所用特殊试剂配制法	236
	附录2	有机化学实验所用试剂配制法	237
	附录3	有机化学实验考核项目	240
	附录4	有机化学实验考核评分标准	241
参考答案	(选择	≚题)	247
参考文献			250

第一篇 烃——有机化合物的母体

只由碳和氢两种元素组成的有机化合物,称为碳氢化合物,简称烃。烃分子中的氢原子被其他的原子或原子团取代后,可衍生出一系列的有机化合物。因此,烃可看作有机化合物的母体。根据烃分子的结构特点,可以分为如下几类:

第一节 烷烃

学习目标 🔈

- 1. 理解烷烃、同分异构现象的概念及烷烃的结构特征和通式;
- 2. 掌握烷烃的系统命名法和主要化学性质;
- 3. 了解常见烷烃及其主要用途。

分子中碳与碳之间相互结合成开放链状的烃称为开链烃,又称脂肪烃。它分为饱和链烃和不饱和链烃。分子中碳原子与碳原子之间都以单键相连,碳原子的其余价键都和氢原子相连的开链化合物,称为饱和链烃,简称烷烃。

【走进医药】

烷烃与医药

在医药中软膏剂常用的基质是烃类,如凡士林和石蜡油属于烷烃。常用的软膏剂由主药和基质两部分组成,基质是药物的载体,对药物的释放与吸收及软膏剂的质量都有重要的作用。凡士林又称"软石蜡",有适宜的黏稠性和涂展性,本身无味,无刺激性,不溶于水,性质稳定,能与多种药物配伍,在医药上常用作软膏类药物的基质,而石蜡油可用作滴鼻剂和喷雾剂的基质。

一、烷烃的结构、组成通式

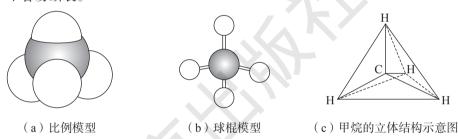
(一) 烷烃的结构

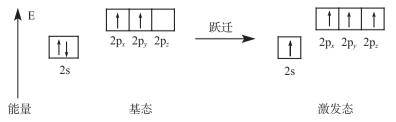
最简单的烷烃是甲烷,分子式为 CH4。甲烷是天然气和沼气的主要成分,为无色、

无味的可燃气体。

甲烷分子中碳原子和 4 个氢原子共用 4 对电子,形成了 4 个碳氢 σ键。若用"一"表示一个共价键,则甲烷的分子结构可表示为:

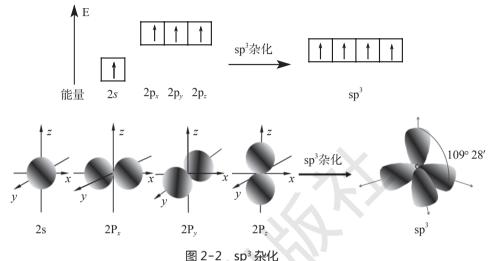
此结构式只表示甲烷分子中碳原子与氢原子的成键情况,但不能说明分子中各个原子在空间的分布情况。实际上,甲烷分子中的碳原子与 4 个氢原子不在同一平面上,而是形成正四面体结构。其中,碳原子位于正四面体的中心,4 个氢原子分别位于正四面体的 4 个顶点上,每两个相邻的 C—H 键之间的夹角(键角)都是 109° 28′,如图 2-1 所示。烷烃分子中碳原子的结构特点是:正四面体形的立体结构,分子中碳与碳之间、碳与氢之间都以单键相连,而且所有的碳碳单键和碳氢键都是 σ键。σ键重叠程度大、稳定、不容易断裂。




图 2-1 甲烷的分子模型和立体结构

知识链接

杂化轨道理论(一)


核外电子在一般状态下总是处于一种较为稳定的状态,即基态。而在某些外加作用下,电子可以吸收能量变为较活跃的状态,即激发态。碳原子在基态时,只有两个未成对电子。根据价键理论和分子轨道理论,碳原子应是两价的。但大量事实都证明,在有机化合物中碳原子都是四价的,而且在饱和化合物中,碳的四价都是等同的。为了解决这个矛盾,1931年鲍林提出了杂化轨道理论。杂化轨道理论认为:

碳原子在成键过程中首先要吸收一定的能量,使 2s 轨道的一个电子跃迁到 2p 空轨道中,形成碳原子的激发态。激发态的碳原子具有 4 个单电子,因此碳原子为四价。

碳原子在成键时, 4个原子轨道可以进行重新组合, 形成 4个能量等同的新轨 道, 称为杂化轨道。这种由不同类型的轨道重新组合成新轨道的过程, 叫轨道的杂 化。碳原子的杂化轨道类别有3种:sp3杂化、sp2杂化、sp杂化。

sp³杂化 由 1 个 2s 轨道和 3 个 2p 轨道重新组合形成的 4 个能量相等的新轨道, 叫 sp³ 杂化轨道,这种杂化方式叫 sp³ 杂化。如图 2-2 所示:

sp³ 杂化轨道的形状及能量既不同于 2s 轨道,又不同于 2p 轨道,它含有 1/4 的 2s 轨道成分和 3/4 的 2p 轨道成分。sp3 杂化轨道是有方向性的, 4 个 sp3 杂化轨道呈四面 体分布,轨道对称轴之间的夹角均为 109° 28'。 烷烃分子中的碳原子都是 sp³ 杂化。

例如: 甲烷 (CH_4) 分子中 C 原子的 1 个 2s 电子跃迁到 2p 轨道后, 1 个 2s 轨 道和3个2p轨道重新组合形成4个sp3杂化轨道,它们分别与4个H原子的1s轨 道以"头碰头"方式重叠,形成4个相同的C-Hσ键。C原子位于正四面体中心, 4个 H 原子分别位于正四面体的 4个顶点。如图 2-3 所示:

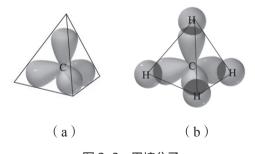
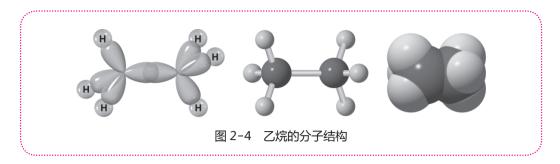



图 2-3 甲烷分子

烷烃分子中的碳原子都是 sp³ 杂化, 其中所有的碳碳单键和碳氢键均为 σ键。 如乙烷(CH3CH3)的分子结构,如图 2-4 所示:

烷烃分子中, 根据碳原子的相互连接方式不同, 可将碳原子分为四类。

伯碳原子(1°)是指只与一个其他碳原子直接相连的碳原子。如上式中的 C^{1} 、 C^{5} 、 C^{6} 、 C^{7} 、 C^{8} 。

仲碳原子(2°)是指与两个其他碳原子直接相连的碳原子。如上式中的 C⁴。

叔碳原子(3°)是指与三个其他碳原子直接相连的碳原子。如上式中的 C³。

季碳原子(4°)是指与四个其他碳原子直接相连的碳原子。如上式中的 C^2 。

课堂活动一 ……………

指出下列烷烃分子中各碳原子的类型。

1.
$${}^{1}_{CH_{3}}$$
 $-{}^{2}_{CH}$ $-{}^{3}_{CH_{2}}$ $-{}^{4}_{CH_{3}}$ 2. ${}^{2}_{CH_{3}}$ $-{}^{2}_{CH_{3}}$ $-{}^{4}_{CH_{3}}$ $-{}^{2}_{CH_{3}}$ $-{}^{2}_{CH_{3}}$

(二) 烷烃的组成通式

除甲烷外,还有一系列结构和性质与甲烷相似的烃,例如,乙烷、丙烷、丁烷等,它们的结构式、结构简式和分子式见表 2-1。

表 2-1 几种烷烃的结构式、结构简式和分子式

名称	结构式	结构简式	分子式	同系差
甲烷	H H—C—H H	$\mathrm{CH_4}$	CH ₄	

名称	结构式	结构简式	分子式	同系差
乙烷	H H H-C-C-H H H	CH ₃ CH ₃	C_2H_6	CH ₂
丙烷	H H H 	CH ₃ CH ₂ CH ₃	$\mathrm{C_3H_8}$	CH ₂
丁烷	H H H H 	CH ₃ CH ₂ CH ₂ CH ₃	$\mathrm{C_4H_{10}}$	CH ₂

由表 2-1 可以看出,这些烷烃的结构相似,在分子组成上相差一个或多个 CH₂ 原子团(CH₂ 原子团称为同系差或系差),把一系列这样的化合物称为同系列,同系列中的化合物互称为同系物。同系物的化学性质相似,物理性质随碳原子数的递增呈现出规律性的变化。掌握了同系列中具有代表性化合物的性质,就能推知其他同系物的一般性质。

观察表 2-1 可以发现,烷烃分子中碳原子个数与氢原子个数之间的比例为 n:(2n+2),即烷烃的分子组成可以用通式 C_nH_{2n+2} 来表示。

课堂活动二

烷烃的结构特点是什么? 烷烃的组成通式如何表示?

(三) 烷烃的同分异构现象

分子式为 C₄H₁₀ 的烷烃有两种不同的结构式,分别为:

像这种具有相同的分子组成,但由于碳链的结构不同而产生的同分异构现象称为碳链异构。

课堂活动三

戊烷(C₅H₁₂)的三种同分异构体的球棍模型如下:

洁	埴	军	
VF1	倶	-	

物质名称	正戊烷	异戊烷	新戊烷
结构式			
相同点			
不同点			

随着烷烃分子中碳原子数目的增加,同分异构体的数目迅速增多。如 C_6H_{14} 有 5 种同分异构体, C_7H_{16} 有 9 种同分异构体, $C_{20}H_{42}$ 有 366319 种同分异构体。

课堂活动四 …………

写出分子组成为 C₆H₁₄ 的烷烃的 5 种同分异构体。

二、烷烃的命名

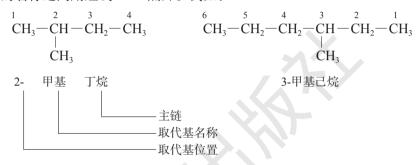
烷烃的命名有普通命名法和系统命名法。

(一)普通命名法

普通命名法只适用于结构比较简单的烷烃。命名方法如下:

1. 碳原子数目在 10 以下时,分别用甲、乙、丙、丁、戊、己、庚、辛、壬、癸表示,碳原子数目在 10 以上时,用中文数字"十一""十二"……表示。

例如:


2. 对结构比较简单的同分异构体,常用"正""异""新"来区分。

直链烷烃,称为"正某烷","正"字也可省略;其中"某"是指分子中碳原子的数目。碳链的一端具有CH₃-CH-结构的烷烃,称为"异某烷";

3. 在有机化合物分子中,通常把支链称为取代基,烃分子中去掉一个氢原子后剩下的基团称为烃基。烷烃分子中去掉一个氢原子后剩下的基团称为烷基,用 "R—"表示,通式为 C₂H_{2p+1}—。烷基的名称由相应烷烃来定,即把 "烷"字换成 "基"字。例如:

结构比较复杂的烷烃可以使用系统命名法,系统命名法命名的原则及步骤如下:

- 1. 选择主链 选择含碳原子数目最多的碳链为主链,按主链上碳原子的数目称为 "某烷","某"字的叫法与普通命名法相同。
- 2. **给主链编号** 从靠近取代基的一端开始,用阿拉伯数字 1, 2, 3, 4, ……给主链上的碳原子依次编号,以确定取代基的位置。
- 3. <mark>名称写法</mark> 把取代基的位次与取代基的名称写在"某烷"之前,取代基的位次编号与取代基的名称之间用短线"-"隔开。例如:

4. **多个支链的表示** 若主链上有几个相同的取代基,则将它们合并起来,用二、三等数字表示取代基的数目,取代基的位次要一一标明,表示位次的阿拉伯数字之间用 "," 隔开,写在取代基之前;若有几个不同的取代基,则把简单的取代基写在前面,复杂的取代基写在后面,中间用 "-" 隔开。例如:

此外,如果分子中有几条等长碳链可当主链时,应考虑含支链最多的碳链为主链; 若在主链两端等距离都有支链,则遵从使取代基位次数的代数和最小的原则进行编号。

课堂活动五

用系统命名法对己烷 (C_6H_{14}) 的 5 种同分异构体进行命名。

课堂活动六

用系统命名法命名或写出结构简式:

三、烷烃的性质

(一) 烷烃的物理性质

随着烷烃分子中碳原子数目的增加,烷烃的物理性质呈现出规律性的变化。室温下, $C_1 \sim C_4$ 的直链烷烃为气体; $C_5 \sim C_{16}$ 的直链烷烃为液体;17 个碳原子以上的直链烷烃为固体。直链烷烃的熔点和沸点,随着相对分子质量的增大而升高。

烷烃都比水轻,难溶于水,易溶于乙醇、乙醚、四氯化碳等有机溶剂中。

(二) 烷烃的主要化学性质

1. **稳定** 烷烃分子中的碳碳键和碳氢键都是较牢固的σ键,因而烷烃的化学性质很稳定,体现在一般不与强酸、强碱、强氧化剂发生化学反应,但在一定条件下可以发生某些化学反应。

通常利用烷烃的稳定性——不与高锰酸钾溶液反应,即不能使紫红色的高锰酸钾溶液褪色,来鉴别烷烃与其他不饱和开链烃。

2. 可燃 烷烃在空气中燃烧,生成二氧化碳和水,同时放出大量的热。例如:

上述反应也称为氧化反应。在有机化学中,常把反应过程中加氧去氢的反应称为氧化反应;反之,把反应过程中去氧加氢的反应称为还原反应。

3. **取代反应** 有机化合物分子中的氢原子(或其他原子)或原子团被另一原子或原子团所代替的反应称为取代反应。烷烃在高温、光照或催化剂的作用下,能与卤素单质发生取代反应。例如,甲烷在紫外光照射下与氯气发生取代反应,反应是分步进行的。

$$CH_4 + Cl_2$$
 $\xrightarrow{\mathcal{X}_{\mathbb{H}}}$ $CH_3Cl + HCl$ $-$ 氣甲烷
$$CH_3Cl + Cl_2 \xrightarrow{\mathcal{X}_{\mathbb{H}}}$$
 $CH_2Cl_2 + HCl$ $=$ 氣甲烷
$$CH_2Cl_2 + Cl_2 \xrightarrow{\mathcal{X}_{\mathbb{H}}}$$
 $CHCl_3 + HCl$ $=$ 氣甲烷
$$CHCl_3 + Cl_2 \xrightarrow{\mathcal{X}_{\mathbb{H}}}$$
 $CCl_4 + HCl$ 四氯甲烷

20 > 有机化学

甲烷的四种卤代物都不溶于水。常温下,一氯甲烷为气体;二氯甲烷、三氯甲烷(又称氯仿)、四氯甲烷(又称四氯化碳)都是液体,可用作有机溶剂。四氯化碳还可用作灭火剂。

四、常见的烷烃

(一) 甲烷

甲烷是天然气和沼气的主要成分,为无色、无味的气体,比空气轻,难溶于水,很容易燃烧,是一种优良的气体燃料。但必须注意,空气中的甲烷体积分数在5%~15.4%时,遇热源和明火立即发生爆炸,所以煤矿矿井必须采取通风、严禁烟火等安全措施,以防瓦斯爆炸事故的发生;使用天燃气和液化石油气时,也应注意安全,严防燃气的泄漏。

(二)其他常见的烷烃

烷烃主要来源于天然气、石油和煤的加工产物。工业上对石油进行分馏,得到多种 烃的混合物,重要烷烃及其用途见表 2-2。

分馏产物	主要成分	主要用途
天然气	$C_1 \sim C_4$	燃料
汽油	$C_5 \sim C_{11}$	飞机、汽车等的燃料
煤油	$C_{11} \sim C_{16}$	燃料、工业洗涤剂
柴油	$C_{15} \sim C_{18}$	柴油机的燃料
润滑油	$C_{16} \sim C_{20}$	润滑油、防锈剂
凡士林	液态烃和固态烃的混合物	润滑油、防锈剂、制药膏
石蜡	$C_{20} \sim C_{24}$	制蜡烛、蜡纸及医药用
沥青	$C_{30} \sim C_{40}$	铺路、防腐、建筑材料

表 2-2 重要烷烃及其用途

课堂活动七

写出庚烷(C₇H₁₆)的同分异构体(9种)并命名。

第二节 不饱和链烃

学习目标 🔈

- 1. 熟悉烯烃与炔烃的结构特点和通式;
- 2. 掌握烯烃、炔烃的系统命名法;
- 3. 掌握烯烃与 1- 位炔烃的主要化学性质, 并能用化学方法区别烷烃、烯烃与炔烃;
- 4. 了解常见的烯烃与炔烃。

【走进医药】

不饱和链烃与医药

临床上许多药物分子中含有碳碳双键或碳碳三键,如萜类、雌激素、炔雌醇、松节油、薄荷油、樟脑、维生素 A、β- 胡萝卜素等,其中有些是人体生命活动过程中不可缺少的活性物质。

$$H_3C$$
 OH H_3C OH H_3C W H_3C H_3C

用于制造医用注射器、真空采血器、输液器等的聚乙烯,是用不饱和烃——乙烯为 原料制备的。

一、不饱和链烃的结构

分子中含有碳碳双键或碳碳三键的开链烃称为不饱和链烃。根据官能团不同又分为烯烃和炔烃。

(一) 烯烃的结构

1. 烯烃的官能团

分子中含有碳碳双键(C=C)的不饱和链烃称为烯烃,烯烃的官能团是碳碳双键,它决定着烯烃的主要性质。烯烃分子的结构特征是含有碳碳双键,在空间构型上,与烷烃不同的是:由于有碳碳双键,双键的每个碳原子只能与两个原子分别相连,且与双键碳原子均在同一平面上,形成一个平面对称结构。

最简单的烯烃是乙烯,乙烯的结构式和分子模型如图 2-5 所示。

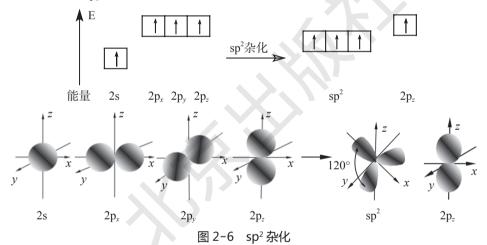
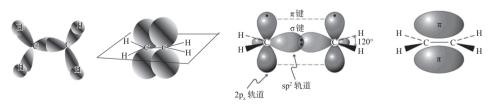

$$H$$
 $C = C$ H H $C = C$ H (a) 结构式 (b) 比例模型 (c) 球棍模型

图 2-5 乙烯的结构式和分子模型


知识链接

杂化轨道理论 (二)

 sp^2 杂化 由一个 2s 轨道和两个 2p 轨道重新组合形成 3 个能量等同的杂化轨道,称为 sp^2 杂化。 乙烯结构中双键碳原子(C=C)的 2 个 2p 轨道($2p_x$ 、 $2p_y$)和 1 个 2s 轨道重新组合形成 sp^2 杂化轨道,这 3 个能量相等的轨道位于同一平面并互成 120° 夹角,另外一个 $2p_z$ 轨道未参与杂化,位于与平面垂直的方向上。如图 2-6 所示:

例如: 乙烯 $(CH_2=CH_2)$ 分子中,双键碳原子的 $3 \land sp^2$ 杂化轨道中有 $2 \land sp^2$ 轨道分别与 $2 \land H$ 原子的 1s 轨道以"头碰头"的方式重叠形成碳氢 σ 键,还有 $1 \land sp^2$ 轨道则与另一个碳原子的 sp^2 轨道以"头碰头"的方式重叠形成碳碳 σ 键,同时两个碳原子各自的位于垂直方向的 $2p_2$ 轨道从侧面以"肩并肩"的方式重叠形成 π 键。也就是说碳碳双键中两个键是不等同的,其中一个是 σ 键,另一个是 π 键。由于 π 键重叠程度较小,且两成键原子不可以相对旋转,因而较不稳定,容易断裂。如图 2-7 所示:

乙烯分子中的 σ 键

乙烯分子中的π键

图 2-7 乙烯分子

按照分子中含有碳碳双键的数目,可将烯烃分为单烯烃(含有一个碳碳双键)、二烯烃(含有两个碳碳双键)和多烯烃(含有多个碳碳双键)。如不特别指明,通常所说的"烯烃"是指单烯烃。

2. 烯烃的通式和同分异构现象

与烷烃相似,烯烃在分子组成上也是相差一个或若干个 CH_2 同系差,因而构成了烯烃的同系列。烯烃分子中因含碳碳双键,故比相同碳原子数的烷烃少 2 个氢原子,所以分子组成通式为 C_nH_{2n} 。

与相同碳原子数的烷烃相比,烯烃的同分异构体数目要多。这是因为除碳链异构外,还存在位置异构和顺反异构(见第十章立体化学结构)。

(1)碳链异构:

1- 丁烯(或2-丁烯)与2-甲基-1-丙烯属于碳链异构;

(2) 位置异构:

1- 丁烯与 2- 丁烯则是由于双键位置不同而引起的异构,这种异构叫位置异构。

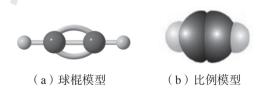
$$CH_3-CH_2-CH=CH_2$$
 $CH_3-CH=CH-CH_3$ 1- 丁烯 2- 丁烯

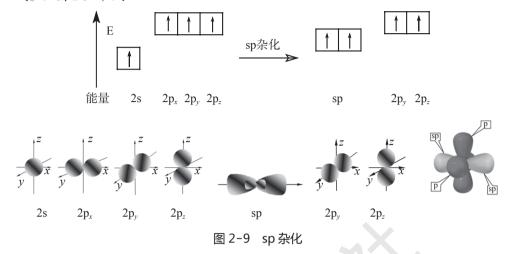
(二) 炔烃的结构

1. 官能团

分子中含有碳碳三键($-C \equiv C-$)的不饱和链烃称为炔烃,碳碳三键是炔烃的官能 团。最简单的炔烃是乙炔,分子式是 C_2H_2 ,其结构式为 $H-C \equiv C-H$ 。

碳碳之间三键相连,因此每个碳原子只能连一个氢原子,乙炔分子的立体构型是直线形的。乙炔的分子模型如图 2-8 所示。




图 2-8 乙炔的分子模型

知识链接 …

杂化轨道理论(三)

sp杂化 由一个2s轨道和一个2p轨道重新组合形成两个能量等同、方向相反的杂化轨道,称sp杂化。sp杂化轨道含有1/2的2s轨道成分和1/2的2p轨道成分,两个sp杂化轨道伸向碳原子核的两边,它们的对称轴在一条直线上,互呈180°夹

角。碳原子还有两个未参与杂化的 2p 轨道,都垂直于 sp 杂化轨道对称轴所在的直线。如图 2-9 所示:

例如: 乙炔($HC \equiv CH$)分子中两个碳原子均为 sp 杂化,两个碳原子各用一个 sp 杂化轨道以"头碰头"方式互相重叠形成碳碳 σ 键,两个碳原子分别又以另一个 sp 杂化轨道与氢原子以"头碰头"方式重叠形成碳氢 σ 键,如图 2-10 (a) 所示;乙炔分子中的两个碳原子和两个氢原子在同一直线上,键角为 180° ,所以乙炔分子是直线形的;两个碳原子各自都还有未参与杂化的 $2p_y$ 与 $2p_z$ 轨道垂直于 x 轴并互相垂直,同时以"肩并肩"的方式互相重叠形成两个 π 键。如图 2-10 (b) 所示。炔烃分子中的碳碳三键是由一个 σ 键和两个 π 键组成。烯烃与炔烃分子中都含有 π 键, π 键轨道重叠程度较小,不稳定,容易断裂,所以烯烃和炔烃都容易发生加成反应。

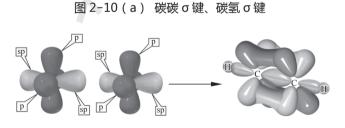


图 2-10(b) 两个π键

2. 炔烃的通式和同分异构现象

炔烃除乙炔外,还有丙炔、丁炔等—系列含有碳碳三键的化合物,这些化合物组成了炔烃的同系列。与相同碳原子数的烯烃相比,炔烃少了2个氢原子,分子组成通式为C_nH_{2n-2}。 炔烃也有同分异构现象。与烯烃—样,存在碳链异构和碳碳三键位置异构。如: 碳链异构:

(三)二烯烃

含两个碳碳双键的不饱和烃称为二烯烃,开链二烯烃的分子通式为 C_nH_{2n-2} 。根据两个碳碳双键的位置不同,二烯烃可以分为以下三类:

1. 共轭二烯烃 分子中两个双键被一个单键隔开, 是含有共轭结构的二烯烃。

共轭二烯烃是合成橡胶的重要原料,例如:1,3-丁二烯自身聚合可得顺丁橡胶,与苯乙烯共聚得丁苯橡胶,与丙烯腈共聚得丁腈橡胶。

2. 孤立二烯烃 分子中两个双键被两个或两个以上的单键所隔开的二烯烃。

这类二烯烃的构造和性质与单烯烃相似。

3. 累积二烯烃(又称聚集二烯烃)分子中两个双键连在同一个碳原子上。

此类二烯烃稳定性较差,数目很少。

二、不饱和链烃的命名

不饱和链烃的系统命名法与烷烃相似,其命名原则和主要步骤为:

- 1. <mark>选主链</mark> 选择含有碳碳双键(碳碳三键)在内的最长碳链为主链,按主链上碳原子的数目称为"某烯"("某炔")。
- 2. 编号 从靠近碳碳双键(碳碳三键)一端开始,给主链碳原子编号,把双键(三键)的位次写在某烯(某炔)之前,中间用"-"隔开。

3. **取代基** 将取代基位置、数目和名称按由简单到复杂的顺序依次标在双键(三键)位次之前。

例如:
$$CH_3$$
— CH — CH — CH — CH_3 — CH

二烯烃的系统命名法是以含有两个碳碳双键的最长碳链为主链,称为某二烯,作为母体二烯烃。从最靠近碳碳双键的一端开始给主链上的碳原子编号,两个碳碳双键的位次标明于母体二烯烃名称之前。取代基的位置随着主链上碳原子的编号位次而定。

课堂活动一

用系统命名法命名下列有机物。
$$1. \ CH_3-C \equiv C-CH_2-CH_3 \qquad \qquad 2. \ CH \equiv C-CH_2-CH-CH_3 \\ CH_2-CH_3 \qquad \qquad CH_2-CH_3 \\ 3. \ CH_2=CH-CH-CH_3 \\ CH_3 \qquad \qquad 4. \ CH_3-CH-C=CH-CH_3 \\ CH_3 \qquad \qquad CH_2-CH_3 \\ \end{cases}$$

$$5. \ CH_3CH_2$$

三、不饱和链烃的化学性质

烯烃分子中的碳碳双键和炔烃分子中的碳碳三键中都有不牢固的 π 键,容易断裂,因而烯烃和炔烃的化学性质活泼,化学反应主要发生在碳碳双键(C=C)和碳碳三键($-C\equiv C-$)上。

(一) 烯烃、炔烃的相似性

1. 可燃性

烯烃和炔烃也能在空气中燃烧, 生成二氧化碳和水, 并伴有黑烟。

2. 加成反应

有机化合物分子中双键或三键中的 π 键断裂,加入其他原子或原子团的反应,称为加成反应。

烯烃和炔烃可以与多种试剂发生加成反应。反应时,分子中不饱和键上的 π 键断裂,试剂中的原子或原子团分别加到不饱和键的碳原子上,形成 σ 键。

(1)加氢:在适当的催化剂如铂(Pt)、钯(Pd)或镍(Ni)的催化作用下,烯烃和 炔烃都可以与氢气发生加成,生成相应的烷烃。由于有催化剂存在,该反应又称催化 加氢。如:

$$CH_2 = CH_2 + H_2 \xrightarrow{Pt} CH_3 - CH_3$$

乙烯

(2)加卤素:不饱和链烃与卤素(常用氯和溴)在常温下就能发生加成反应。如将 溴水分别与乙烯和乙炔反应,溴的红棕色会迅速消失。该反应现象明显,常用于鉴别含 有不饱和键的有机化合物。反应方程式如下:

(3)加卤化氢:不饱和链烃与卤化氢发生加成反应,生成卤代烷。如:

在加成反应中, 卤化氢 HX 含有 2 个不同的原子, 是不对称试剂。若烯烃双键的 2 个碳原子连接的氢原子数不同,则属于不对称烯烃。不对称试剂与不对称烯烃发生加成反应时,可能有两种加成方式。如丙烯与溴化氢的加成:

$$CH_3 - CH = CH_2 + HBr \longrightarrow CH_3 - CH_2 - CH_2Br$$

$$CH_3 - CH - CH_3$$

$$Br$$

实际上得到的主要产物是 2- 溴丙烷。大量实验事实证明, 当不对称烯烃与不对称试剂(如卤化氢)加成时, 氢原子总是加在含氢较多的碳原子上。这一规律称为马尔科夫尼科夫规则, 简称马氏规则。炔烃与卤化氢加成, 反应分两步进行, 遵循马氏规则。

$$CH_3 - C \equiv CH \xrightarrow{HCl} CH_3 - C = CH_2 \xrightarrow{HCl} CH_3 - C - CH_3$$

$$Cl \qquad Cl$$
1- 丙炔 2- 氯丙烯 2,2- 二氯丙烷

(4) 加水: 烯烃或炔烃在催化剂存在下, 可以和水发生加成反应。

$$CH_2 = CH_2 + H - OH \xrightarrow{H_2SO_4} CH_3 - CH_2 - OH$$

$$CH \equiv CH + H - OH \xrightarrow{H_2SO_4} CH_3 - CHO$$

课堂活动二 ……

1. 完成下列反应方程式:

$$CH_3$$

(1) $CH_2 = CH - CH - CH_3 + HI \longrightarrow$
(2) $CH_3 - CH = CH_2 + H_2O \xrightarrow{H_2SO_4}$

- 2. 用碘酒能验证汽油含不饱和烃吗?
- 3. 已知有一种炔烃与 HBr 加成后的主要产物如下所示,请写出这种炔烃的结构式。

$$\begin{array}{c} CH_3 \ Br \\ | \ | \\ CH_3-CH-C-CH_3 \\ | \ Br \end{array}$$

3. **氧化反应** 烯烃和炔烃能被氧化剂如高锰酸钾氧化,使高锰酸钾的紫红色褪去,现象较明显,也可用此反应鉴别不饱和链烃。

$$CH_{2} = CH_{2} \xrightarrow{KMnO_{4}/H_{2}O} CH_{2} - CH_{2}$$

$$OH OH$$

$$CH \equiv CH \xrightarrow{KMnO_{4}/H^{+}} CO_{2} + H_{2}O$$

4. 聚合反应

由小分子化合物(称为单体)通过加成反应结合成大分子化合物(称为聚合物)的 反应称为聚合反应。在一定条件下,烯烃或炔烃分子可以相互加成,生成大分子化合物。 例如:

$$nH_2C = CH_2 \xrightarrow{\text{催化剂}} + CH_2 - CH_2 +_n$$
 聚乙烯
$$\mathbb{R} \subset \mathbb{R} + HC = CH \xrightarrow{\text{催化剂}} + CH_2 = CH - C = CH$$
 $CH_2 = CH - C = CH$
 $CH_2 = CH - C$
 $CH_2 = CH$
 $CH_2 =$

乙炔自身加成的产物乙烯基乙炔是生产氯丁烯橡胶的原料。

共轭二烯烃和孤立二烯烃大部分性质一样,孤立二烯烃能够发生的反应,共轭二烯 烃也能发生。但是,共轭二烯烃能够发生双烯合成,反应后由液态变成固态,用这种方 法能够鉴别两种二烯烃。

(二) 炔烃的特性——金属炔化物的生成

实践证明:凡是含有CH≡C-结构的炔烃,连在三键碳上的氢原子能被金属原子取代而生成金属炔化物。例如:将乙炔通入银氨溶液(硝酸银氨溶液)或铜氨溶液(氯化亚铜氨溶液)中,生成白色的乙炔银沉淀或棕红色的乙炔亚铜沉淀。反应式如下:

$$HC \equiv CH + 2Ag(NH_3)_2NO_3$$
 $\longrightarrow AgC \equiv CAg \downarrow + 2NH_3 + 2NH_4NO_3$ 硝酸银氨 乙炔银

课堂活动三

用化学方法鉴别乙烷、乙烯、乙炔。

四、常见的不饱和链烃

- 1. 乙烯(H₂C=CH₂) 无色、稍带甜味的气体,它是植物代谢的产物,是一种植物生长调节剂,对果实具有催熟作用。如为防止果实在运输和储存的过程中发生腐烂,通常采摘七到九成熟的果实,出售前再加入少量乙烯,以催熟果实。在日常生活中,若把青香蕉和熟橘子或生苹果和熟苹果放在同一个袋子中,也可起到催熟作用。这是因为,成熟水果自身能放出乙烯。乙烯也是有机合成工业和石油化学工业的重要原料,世界上将乙烯产量作为衡量一个国家石油化工生产水平的标志。
- 2. <mark>聚乙烯</mark> 是一种性能优良、无毒、耐腐蚀的塑料,广泛地运用于包装、日用品等。 用聚乙烯可制作输液容器、各种医用导管、整形材料等。
- 3. 乙炔 俗称电石气, 纯净的乙炔是具有芳香气味的气体, 用电石(CaC_2)制得的 乙炔具有特殊难闻的气味, 这主要是由于电石中含有 S、P 等杂质, 使制得的乙炔中含有 微量的 H_2S 、 PH_3 。乙炔在空气中燃烧时产生明亮火焰, 在氧气中燃烧时放出大量的热, 可使温度达到 3 000 C以上, 故乙炔广泛用于焊接和切割金属。此外, 乙炔还是三大合成材料(合成橡胶、塑料、合成纤维)以及一些有机合成工业的重要基本原料。

母 综合练习

一、填空题

二、用系统命名法命名下列化合物或写出结构简式

3.
$$CH_3 - CH_2 - C = CH_2$$

 $CH_2 - CH_3$
4. $CH_3 - C = C - CH - CH_3$
 $CH_3 - CH_3$

5. $CH_2 = CH_2$

7. 3- 月	基 -3- 乙基己	烷	8. 3,3- 二甲基 -1- 丁烷	L
三、完 1. CH ₂ 2. CH 3. CH ₃ 4. CH ₃ 四、单 1. 将作	$=$ $CH_2 + Br_2$ $=$ $CH + 2Br_2$ $ CH = CH_2$ $ CH_2 - CH_3$ 上项选择题 = 物秸秆、垃圾	应方程式,并说出反应 → + HBr → = CH - CH ₃ KMnO ₄ /H 及、粪便等"废物"在		酵,会产生大量的可
	为主要成分是(11 = 11 ///// 11 0
	4		C. CO	D. H ₂
2. 用 矛	统命名法命名	新戊烷,名称为(
A. 戊炔	完		B. 2- 甲基戊烷	
C. 2,2-	·二甲基丙烷		D. 2,2- 二甲基戊烷	
3. 在有	可机化合物分子	中,与其他1个碳原	子直接相连的碳原子和	弥为()
A. 伯爾	炭原子	B. 仲碳原子	C. 叔碳原子	D. 季碳原子
4. 下列	物质中,能与	;甲烷发生取代反应的	是()	
A. 氢 ⁴	Ę	B. 氯气	C. 氧气	D. 水
5. 烯烃	圣的官能团为(
A. —X	K	$B C \equiv C -$	C. c = C	$D \overset{\mid}{C} - \overset{\mid}{C} -$
6. 炔烃	圣的官能团为()		
A. — ($C \equiv C -$	B. —Cl	$C \stackrel{ }{C} - \stackrel{ }{C} -$	D. C = C
7. 甲烷	完的空间结构为	1 ()		
A. 正日	四面体形		B. 三角锥形	
C. 正 3	三角形		D. 直线形	
8. 下歹	可物质中, 既能	 步使酸性高锰酸钾溶液	支褪色,又能与银氨溶	液反应产生白色沉淀
的是()			
A. 1-	丁烯		B. 1- 丁炔	
C. 丁为	完		D. 2- 丁炔	

6. 2,3- 二甲基丁烷

9. 下列物质中,用酸性高锰酸钾溶液和渗	臭水都能将其区分的是	()
A. 乙烷和乙烯	B. 乙烯和乙炔	
C. 甲烷和石蜡	D. 乙烯和松节油	
10. 二烯烃与相同碳原子的()分子	通式相同	
A. 烯烃 B. 炔烃	C. 石蜡	D. 烷烃
11. 某烷烃的分子式为 CnH_{18} , 则 n 的值;	为()	
A. 5 B. 6	C. 7	D. 8
12. 乙炔的结构呈()形		
A. 正四面体	B. 三角锥	
C. 正三角	D. 直线	
13. 丙烷的一溴代产物有()种		
A. 2 B. 3	C. 1	D. 4
14. 下列反应属于取代反应的是()		
A. 烷烃的氯代	B. 烯烃的加成	
C. 炔烃的催化加氢	D. 烯烃的氧化	
15. 下列化合物中,含有季碳原子的是(
A. 3,3- 二甲基戊烷	B. 异戊烷	
C. 2- 甲基戊烷	D. 3- 甲基戊烷	
16. 分子式为 C ₆ H ₁₄ 的烷烃的同分异构体	的数目是()	
A. 2 B. 3	C. 4	D. 5
17. 下列烷烃中,沸点最低的是()		
A. 正己烷	B. 正戊烷	
C. 异戊烷	D. 新戊烷	
18. 室温下能与银氨溶液作用生成白色沉	淀的是()	
A. CH ₃ CH ₂ CH ₃	$B. CH_2 = CHCH_3$	
$C. CH_3C \equiv CH$	D. $CH_3C \equiv CCH_3$	
19. 化合物 2,2,4- 三甲基己烷分子中含有	()碳原子	
A. 4 个伯	B. 伯、仲、叔和季	
C. 2 个季	D. 3 个仲	
20. 有机化合物中, 仲碳原子是指与其他	()个碳原子直接	医相连的碳原子
A. 1	B. 2	
C. 3	D. 4	
五、简答题		
1. 计算烷烃 C_nH_{10} 的 n 值, 并写出其同分	异构体的结构简式和《	名称。

- 2. 写出 C_5H_{10} 和 C_5H_8 的同分异构体的结构简式和名称。
- 3. 烷烃的化学性质为什么很稳定? 烯烃和炔烃的化学性质为什么不稳定? 它们各自容易发生哪些化学反应?

32 > 有机化学

- 4. 某烷烃的相对分子质量为 114, 氯代反应中只得到一种一氯代产物, 试推测该烷烃的结构式。
 - 5. 用化学方法鉴别丁烷、1-丁烯和1-丁炔。

六、推导题

具有相同分子式的 2 种化合物 A 和 B,氢化后都生成 2- 甲基丁烷。它们都能与 2 mol Br_2 加成。但 A 可以与银氨溶液作用生成白色沉淀,而 B 不能。试推出 A 和 B 的结构式,并写出相应的反应式。

