

数学

数

(基础模块)

练习册

第

-m

ŧ

金桂堂

图书在版编目 (CIP) 数据

数学(基础模块)练习册.第1册/金桂堂主编. 一 北京:北京出版社,2009.5(2022 重印)

ISBN 978-7-200-07763-6

I. ①数… Ⅱ. ①金… Ⅲ. ①数学课—专业学校—习题 Ⅳ. ① G634.605

中国版本图书馆 CIP 数据核字(2009)第 084740号

数学(基础模块)练习册 第一册 SHUXUE JICHU MOKUAI LIANXICE DIYICE

主 编:金桂堂

出版:北京出版集团公司

北京出版社

地 址:北京北三环中路6号

邮 编: 100120

网址:www.bph.com.cn总发行:北京出版集团公司

经 销:新华书店

印 刷:定州市新华印刷有限公司

版 次: 2009年5月第1版 2022年1月修订 2022年1月第13次印刷

开 本: 787毫米×1092毫米 1/16

印 张: 10

字 数: 175 千字

书 号: ISBN 978-7-200-07763-6

定 价: 20.00元

质量监督电话: 010-82685218 010-58572162 010-58572393

目 录

第-	一章	集合	/1
	1. 1	集合的概念	/1
		1.1.1 集合与元素	/1
		1.1.2 集合的表示方法	/4
		1.1.3 集合间的关系	/8
	1.2	集合的运算	/11
		1.2.1 交集	/11
		1.2.2 并集	/11
		1.2.3 全集与补集	/11
	1.3	充要条件	/15
第二	章	不等式	/22
	2. 1	不等式的性质	/22
	2. 2	区间的概念	/25
	2. 3	不等式的解法	/27
		2.3.1 一元一次不等式组的解法	/27
		2.3.2 一元二次不等式的解法	/29
		2.3.3 含绝对值的不等式的解法	/30
第三	E章	函数	/36
	3 . 1	函数的概念	/36
		3.1.1 函数的概念	/36
		3.1.2 函数的三种表示方法	/40

3 . 2	函数的简单性质	/44
	3.2.1 函数的单调性	/44
	3.2.2 函数的奇偶性	/47
3.3	函数的实际应用举例	/51
第四章	指数函数与对数函数	/61
4.1	幂函数	/61
	4.1.1 有理数指数幂	/61
	4.1.2 实数指数幂及运算法则	/63
	4.1.3 幂函数	/65
4.2		/67
	4.2.1 指数函数的概念、图象和性质	/67
	4.2.2 指数函数的简单应用	/70
4.3	对数的概念和运算	/72
	4.3.1 对数的概念	/72
	4.3.2 利用计算器求对数值	/72
	4.3.3 积、商、幂的对数	/74
4.4	对数函数	/78
	4.4.1 对数函数的概念、图象和性质	/78
	4.4.2 对数函数的简单应用	/81
第五章	三角函数	/86
5. 1	角的概念的推广	/86
	5.1.1 任意角的概念	/86
	5.1.2 终边相同的角	/86
5 . 2		/89
	5.2.1 弧度制	/89
	5.2.2 弧长计算公式	/89
5.3		/92
	5.3.1 任意角的正弦、余弦、正切函数	/92

三角函数在各象限的符号	/94
求三角函数值	/96
函数的基本公式	/98
同角三角函数的基本关系	/98
诱导公式	/101
函数、余弦函数的图象和性质	/104
正弦函数的图象和性质	/104
余弦函数的图象和性质	/104
已知三角函数值,求指定区间的角	/107
<u> </u>	求三角函数值 函数的基本公式 同角三角函数的基本关系 诱导公式 函数、余弦函数的图象和性质 正弦函数的图象和性质 余弦函数的图象和性质

第一章集合

学习目标

本章主要讲述集合的初步认识,它是学习中职数学的工具和语言.

本章的学习目标是:

- 1. 理解集合的含义,会使用符号∈表示元素和集合之间的关系.
- 2. 能选择文字语言、图形语言、符号语言(列举法、描述法和 Venn 图法) 描述 不同的具体问题, 感受符号语言的意义和作用.
- 3. 了解集合的特征性质,会用集合的特征性质描述一些集合,如常用数集、解集和一些基本图形的集合等.
- 4. 理解集合之间包含与相等的含义,能识别一些给定集合的子集. 在具体情境中,了解空集和全集的含义.
- 5. 理解集合的运算(交、并、补). 掌握有关术语和符号,会用它们表达集合之间的关系和运算. 能用 Venn 图表达集合之间的关系和运算.
 - 6. 理解充分条件、必要条件与充要条件的含义.

1. 1 集合的概念

1.1.1 集合与元素

例1 判断下列对象是否构成集合.

- (1) 高个子的学生.
- (2) 金融专业所有学生.
- (3) 数值: $\frac{1}{2}$, $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{3}}{2}$, $\sin 45^\circ$.

2 数学(基础模块)练习册 第一册

分析: 此题考查集合的特性,即:确定性、无序性、互异性.

解:(1) 高个子这个标准不明确,不符合确定性,即高个子的学生不构成集合.

- (2) 金融专业所有学生构成集合.
- (3) $\sin 45^\circ = \frac{\sqrt{2}}{2}$,不符合互异性,不构成集合.

例2 用符号∈或 ∉填空.

- (2) 若 B 是 方程 $x^2 x 2 = 0$ 的解构成的集合,则 -2 B , -1 B.
- (3) 若C为大于-1且小于3的整数构成的集合,则 $\frac{3}{2}$ _____C.

分析: ∈表示元素属于集合, ∉表示元素不属于集合.

解: (1) $-\frac{1}{3}$ 不是整数, -1 是整数, 而 $A=\mathbf{Z}$ 是整数集,

则
$$-\frac{1}{3}$$
 $\notin A$, $-1\in A$.

(2) 解方程 $x^2 - x - 2 = 0$,得

$$x$$
=2 或 x =−1,

所以 $-2 \notin B$, $-1 \in B$.

(3) 集合 C 中的元素有 0, 1, 2,

所以 $\frac{3}{2} \notin C$.

一、选择题

- 1. 下列四个选项中不能构成集合的是()
 - A. 小于 10 的整数
- 2. 下列四个选项中能构成集合的是(
- - A. 我校高个子的男生
 - C. 我班评出的三好学生
- 3. 下面四个选项中为有限集合的是(
 - A. 小于 5 的所有整数

- B. 全体三角形
- C. 某校高一(3) 班全体同学 D. 某校高一(3) 班的好学生
 -)
 - B. 我班漂亮的女生
 - D. 著名的老师
 -)
 - B. 小于 5 的所有自然数

C. 小于 5 的所有有理数 D. 大于 5 的所有自然数

二、判断题(正确的画 "</",错误的画 "×")

1. $0 \in \mathbb{N}^*$. ()

2. $\frac{3}{2} \in \mathbb{Z}$. ()

3. $-2 \notin \mathbf{Z}$. ()

4. $\sqrt{3} \in \mathbf{R}$. ()

三、用符号∈或∉填空

1. 0 _____ N. 2. $\frac{1}{2}$ _____ N. 3. -1 _____ N.

4. 0 _____ **z**. 5. $\frac{1}{2}$ ____ **z**. 6. -1 ____ **z**.

7. $\frac{1}{2}$ Q. 8. -2 Q. 9. $\sqrt{3}$ Q.

10. $\frac{1}{2}$ **R**. 11. -2 **R**. 12. $\sqrt{3}$ **R**.

四、写出下列集合中的元素

- 1. 小于4的正整数.
- 2. 小于6的自然数.
- 3. 大于3 且小于9 的偶数
- 4. 小于 20 的正奇数.
- 5. 平方后等于3的数.
- 6. 五大洲.

- 1. 用∈或∉填空.
- (1) $|-1| \underline{\hspace{1cm}} \mathbf{N};$ (2) $(-\sqrt{2})^2 \underline{\hspace{1cm}} \mathbf{Q};$
- (3) $(-\sqrt{2})^2$ N;
- (4) $\frac{1}{\sqrt{3}}$ Q;
- (5) $\sqrt{(-3)^2}$ **Z.**
- 2. 写出下列集合中的元素.
- (1) 小于 11 的整数.
- (2) 倒数等于其本身的数.
- (3) 小于 20 的非零自然数中的平方数.

1.1.2 集合的表示方法

例1 用列举法表示下列集合。

- (1) 小于 10 的正整数.
- (2) $52x^2-3x+2=0$ 的解集.
- (3) 大于-1且小于5的偶数.
- (4) 平方后等于5的实数.

分析:要把集合中的所有元素——列举出来,写在 { } 内.

- **解**: (1) 正整数从1开始,小于10说明不包括10, 所以小于 10 的正整数的集合是 $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- (2) 方程 $x^2-3x+2=0$ 可以写为 (x-1)(x-2)=0, 其解为 x=1 或 x=2,所以方程 $x^2-3x+2=0$ 的解集是 $\{1, 2\}$.
- (3) 大于-1且小于5的偶数集是 $\{0, 2, 4\}$.
- (4) $(\pm\sqrt{5})^2 = 5$, 所以平方后等于 5 的实数集是 $\{-\sqrt{5}, \sqrt{5}\}$.

例2 用描述法表示下列集合.

- (1) $5\pi x^2 4 = 0$ 的解集.
- (2) 不等式 2x-3>0 的解集.
- (3) 正奇数组成的集合.
- (4) 三角形组成的集合.

分析:要把集合中的元素的公共属性描述出来,写在 { } 内.

解: (1) $\{x \mid x^2 - 4 = 0\}$.

- (2) $\{x \mid 2x-3>0\}$ $\not \exists \left\{x \mid x>\frac{3}{2}\right\}$.
- (3) $\{x \mid x=2n+1, n \in \mathbb{N}\}$.
- $(4) \{x \mid x 是三角形 \}$.

■ 基础达标

一、用列举法表示下列集合

- 1. 大于 0 且小于 10 的偶数.
- 2. 方程 $x^2 + x = 0$ 的解集
- 3. 我国国旗的颜色。
- 4. 数轴到原点的距离等于1的数组成的集合.

二、用描述法表示下列集合

1. 所有整数集.

- 6 | 数学(基础模块)练习册 第一册
 - 2. 大于-3 且小于 10 的实数集.
 - 3. 绝对值大于1的实数构成的集合.
 - 4. 所有偶数集.

三、用适当的方法表示下列集合

- 1. 方程 $x^2 6x + 5 = 0$ 的解集.
- 2. 不等式 2x-1 < 0 的解集.
- 3. 函数 y=x 的图象上的所有点 (x, y) 的集合.
- 4. 所有四边形的集合。
- 5. 不大于5的自然数.
- 6. 你所在学校的所有专业组成的集合.

四、用另一种方法表示下列集合

1. $\{-2, 2\}$.

2.
$$\{x \mid -3 < x < 3, x \in \mathbb{Z}\}$$
.

3.
$$\{x \mid (x+1) (x-2) = 0\}$$
.

4.
$$\{ (x, y) | \begin{cases} x+y=5 \\ 2x-y=-11 \end{cases}$$
.

≥ 能力提升

- 1. 举出一个空集的例子.
- 2. 写出坐标轴上的点的集合.
- 3. 用描述法表示集合 {1, 3, 5, 7, 9}.
- 4. 设集合 $A = \{1, x+1, x^2-1\}$,若 $3 \in A$,求 x.
- 5. 已知集合 $A=\{x\mid ax^2+2x+1=0,\ a\in\mathbf{R}\}$ 中只有一个元素,确定 a 的取值范围.

1.1.3 集合间的关系

例1》用符号(∈, ∉, =, ⊊, ⊋) 填空.

(2)
$$a _{a} (a, b, c); \{a\} _{a} (a, b).$$

(3)
$$\{1\}$$
 ______ $\{x \mid x^2-1=0\}$; $\{0, 1\}$ ______ $\{x \mid x^2-x=0\}$.

分析:符号"∈"及" \notin "用于元素与集合的关系;

符号"="、"⊊"及"⊋"用于集合与集合的关系.

解:(1)0为元素, ∅为空集, 元素与集合间应为属于和不属于关系, 所以0€

∅; {0} 代表只含一个元素 0 的单元素集, 所以 {0} ⊋∅;

(2)
$$a \in \{a, b, c\}, \{a\} \subseteq \{a, b\}$$
.

(3)
$$\{x \mid x^2 - 1 = 0\} = \{-1, 1\}, \text{ MU} \{1\} \subseteq \{x \mid x^2 - 1 = 0\};$$

$$\{x \mid x^2 - x = 0\} = \{0, 1\}, \text{ fill } \{0, 1\} = \{x \mid x^2 - x = 0\}.$$

例2 写出满足条件 $\{a, b\} \subseteq A \subseteq \{a, b, c, d\}$ 的所有集合 A.

分析: $\{a, b\} \subseteq A$ 表明集合 $\{a, b\}$ 是集合 A 的真子集,说明集合 A 中除元素 a, b 外还有其他元素;

又 $A \subseteq \{a, b, c, d\}$ 表明集合 A 是集合 $\{a, b, c, d\}$ 的子集,说明 A 中所含元素个数小于或等于 4.

解:满足条件的集合有 $\{a, b, c\}$, $\{a, b, d\}$, $\{a, b, c, d\}$.

例3 \ 设集合 $A = \{a, a^2, ab\}, B = \{1, a, b\}, 且 A = B, 求实数 a, b 的值.$

分析:可由集合中元素的互异性入手.

解:由集合中元素的互异性可知: $a \neq a^2 \neq ab$.

所以 $a \neq 0$, $a \neq 1$, $a \neq b$

因为A=B,有两种可能.

①
$$\begin{cases} a^2 = 1 \\ ab = b \end{cases}$$
,解得 $\begin{cases} a = 1 \\ b \in \mathbf{R} \end{cases}$ (舍去), $\begin{cases} a = -1 \\ b = 0 \end{cases}$ 符合题意.

②
$$\begin{cases} a^2 = b \\ ab = 1 \end{cases}$$
,解得
$$\begin{cases} a = 1 \\ b = 1 \end{cases}$$
 (舍去)

■基础达标

-,	选	择题						
	1.	集合 $A = \{1, 2\}$,3} 的所有子集	美的个数为	()			
		A. 6	B. 7	C. 8		D . 9		
	2.	集合 $A = \{x \mid x\}$	$x^2-4=0$ 的所	有真子集的	的个数为()		
		A. 4	В. 3	C. 2		D. 1		
	3.	已知 $A = \{x \mid x\}$	$x < 2\sqrt{3}$, $a = 3$,	则())			
		A. $a \notin A$		B. $\{a\}$	$\in A$			
		C. $\{a\} \subseteq A$		D. $a \subseteq A$	A			
	4.		是正方形 $}$, B	$= \{x \mid x\}$	x 是菱形	$\}, C =$	$\{x \mid x \not\in \mathcal{E}\}$	矩形},
则()						
		A. <i>A</i> ⊊ <i>B</i>		B. <i>B</i> ⊊ <i>C</i>				
		C. <i>C</i> ≨ <i>A</i>		D. A = B				
	5.	已知集合 $M =$	$\{(x, y) \mid x\}$	y=0, N	$J = \{ ($	x, y)	x = 0	j=0,
则()						
		$A. M \subsetneq N$		B. <i>N</i> ≨ <i>N</i>				
		C. <i>M</i> ∈ <i>N</i>		D. $M=N$	I			
=,	填	空题						
	1.	用适当的符号填充	空(∈,∉,=,	$\not\subseteq$, $ otin $)				
	(1) {1}	{0, 1};		(2) -1		_ {0, 1};	
	(3) {2, 3}	$(x \mid x^2 - 5x - 5$	-6=0} ;	(4) Ø_		$\{a\}$;	
	(5) {1, 3, 5}	{1, 3, 5,	7};	(6) $\{a,$	<i>b</i> }	{b}.	
	2.	-3 { <i>x</i>	$x \mid 2x - 1 > 1$.					
		若集合 $A = \{x$		$\{x \mid x > -$	-1},则 A	A	B.	
	4.	{-1}	$\{x \mid x \geqslant -1\}.$					
	5	N N*	7+ 7					

6. 设集合 $A = \{x \mid 1 < x < 2\}$, $B = \{x \mid x < a\}$,若 $A \subsetneq B$,则实数 a 的范围是

三、解答题

1. 写出集合 $A = \{a, b, c\}$ 的所有子集、真子集.

2. 已知集合 $A = \{1, 2\}$, $B = \{1, 2, 3, 4, 5\}$, 且 $A \subseteq M \subsetneq B$, 写出满足条件的所有集合 M.

3. 已知集合 $A = \{x \mid ax^2 + 2 = 0\}$ 只有一个子集,求实数 a 的取值范围.

≥ 能力提升

1. 设集合 $M = \{1, a, b\}, N = \{a, a^2, ab\}, 且 M = N, 试求 a 和 b 的值.$

2. 设集合 $M = \{x \mid -2 \leqslant x \leqslant 5\}$, $N = \{x \mid a+1 \leqslant x \leqslant 2a-1\}$, 若 $N \subseteq M$, 试求 a 的取值范围 .

1. 2 集合的运算

- 1.2.1 交集
- 1.2.2 并集
- 1.2.3 全集与补集

例1 设全集 $U = \{ \text{不大于 } 10 \text{ 的自然数} \}$,集合 $M, N \to U \text{ 的子集}$,且

 $M = \{x \mid 2 < x < 7, x \in \mathbb{N}\}, N = \{x \mid 4 < x < 9, x \in \mathbb{N}\} . \not x: \mathcal{C}_U M, \mathcal{C}_U N, M \cap N, M \cup N, \mathcal{C}_U M \cap \mathcal{C}_U N, \mathcal{C}_U M \cup \mathcal{C}_U N.$

分析: 把全集U和集合M, N都用列举法表示出来.

解: 不大于 10 的自然数为小于或等于 10 的自然数,

所以 $U=\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

X M, $N \subseteq U$, $M = \{3, 4, 5, 6\}$, $N = \{5, 6, 7, 8\}$,

所以 $C_UM = \{0, 1, 2, 7, 8, 9, 10\}, C_UN = \{0, 1, 2, 3, 4, 9, 10\},$

 $M \cap N = \{5, 6\}, M \cup N = \{3, 4, 5, 6, 7, 8\},\$

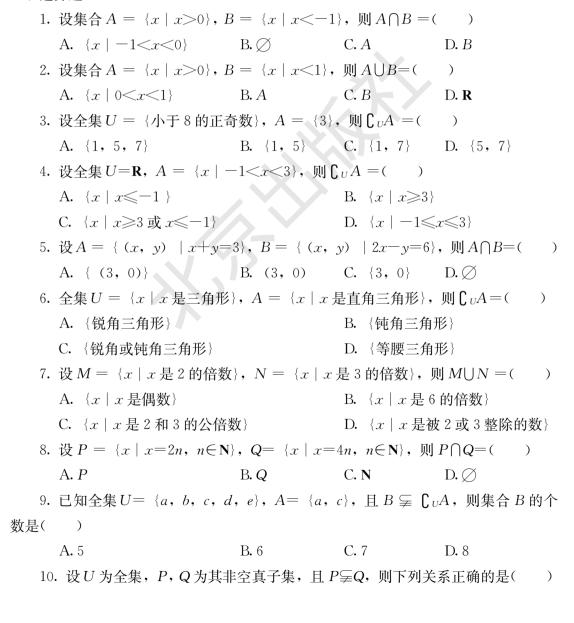
 $\int_U M \cap \int_U N = \{0, 1, 2, 9, 10\}, \int_U M \cup \int_U N = \{0, 1, 2, 3, 4, 7, 8, 9, 10\}.$

例2》已知全集 $U=\{2, 3, a^2+2a-3\}, A=\{|a+7|, 2\}, C_UA=\{5\},$ 求实数a.

分析: 利用 $A \cup \bigcap_{U} A = U \ \mathcal{D} A \cap \bigcap_{U} A = \emptyset$.

解: 因为 $A \cup C_U A = U$, 所以 $\{2, 5, |a+7|\} = \{2, 3, a^2 + 2a - 3\}$,

所以 $a^2+2a-3=5$ 且 |a+7|=3,解两个方程得 $\begin{cases} a=-4 \text{ 或 } a=2, \\ a=-4 \text{ 或 } a=-10, \end{cases}$


 $\mathbb{P} a = -4$.

例3 设二次方程 $x^2 - px + 15 = 0$ 的解集为 A, $x^2 - 5x + q = 0$ 的解集为 B, 当 $A \cap B = \{3\}$ 时,求集合 $A \cup B$ 及 p, q 的值.

分析:可根据方程的解的定义求 p, q 的值,求出方程的解集,即可求集合 $A \cup B$. 解: $A \cap B = \{3\}$,即 3 是两个方程的公共解.把 x = 3 代入方程 $x^2 - px + 15 = 0$,得 p = 8,解方程 $x^2 - 8x + 15 = 0$,得 $x_1 = 3$, $x_2 = 5$,即 $A = \{3, 5\}$.把 x = 3 代入方程 $x^2 - 5x + q = 0$,得 q = 6,解方程 $x^2 - 5x + 6 = 0$,得 $x_1 = 3$, $x_2 = 2$,即 x = 3 形以 x = 3 从 x = 3 从 x = 3 是 x =

■ 基础达标

一、选择题

A.
$$Q \cap \int_U P = \emptyset$$

C. $\int_U (P \cap Q) = \emptyset$

B.
$$P \cap \bigcup_U Q = \emptyset$$

D. $\bigcup_U P \cap \bigcup_U Q = \emptyset$

二、填空题

1. $A \mid B = B \mid A;$ $A \mid A = A \mid A = $	1. <i>A</i> ∩ <i>B</i>	$B \cap A;$	$A \cap A = \underline{\hspace{1cm}}$;	$A \cap \emptyset = \underline{\hspace{1cm}}$	
---	------------------------	-------------	---------------------------------------	---	---	--

2.
$$A \cup B$$
 _______ $B \cup A$; $A \cup A =$ _______; $A \cup \emptyset =$ ______.

3.
$$(\bigcup_U A) \cup A = \underline{\hspace{1cm}}; \quad \bigcup_U (\bigcup_U A) = \underline{\hspace{1cm}}.$$

4.
$$\{x \mid x \in \mathbb{R}\}$$
 $\cap \{x \mid x \in \mathbb{R}\}$ = ______.

5.
$$\{x \mid x$$
 为偶数 $\} \cap \{x \mid x$ 为奇数 $\} =$ ______.

6.
$$2 \notin U = \{a, b, c, d, e\}, A = \{a, c\}, B = \{c, d\},\$$

则(1)
$$\bigcap_U A \cup \bigcap_U B =$$
______; (2) $\bigcap_U (A \cap B) =$ ______;

(3)
$$\bigcap_U A \cap \bigcap_U B = \underline{\qquad}$$
; (4) $\bigcap_U (A \cup B) = \underline{\qquad}$.

7. 设全集
$$U = \{x \mid 0 < x \le 8, x \in \mathbb{N}\}, A = \{2, 3, 4, 7\}, B = \{1, 5, 7, 8\},$$

则(1)
$$C_U A = _____;$$
 (2) $C_U B = ____;$

(2)
$$\int_{U} B =$$

(3)
$$A \cap B = ____;$$
 (4) $A \cup B = ____;$

(6)
$$(\mathcal{C}_U B) \cap B = \underline{\hspace{1cm}}$$
.

8. 设全集
$$U=\mathbf{R}$$
, $A=\{x \mid x>-1\}$, $B=\{x \mid x<3\}$,

则(1)
$$\bigcap_U A =$$
 ;

(3)
$$A \cap B =$$

(5)
$$(\mathcal{C}_U A) \cap B = \underline{\hspace{1cm}};$$
 (6) $A \cup \mathcal{C}_U B = \underline{\hspace{1cm}}.$

(6)
$$A \bigcup \mathcal{C}_U B = \underline{\hspace{1cm}}$$
.

9. 设
$$U = \{x \mid x$$
 是小于 12 的质数 $\}$, $A = \{2, 3, 5\}$, $B = \{3, 7\}$,则 $\bigcap_U A = \{0, 1\}$, $\bigcap_U B = \{0, 1\}$ 。

三、解答题

1. $\ \mathcal{C}A = \{x \mid 2x^2 + x + p = 0\}, \ B = \{x \mid 2x^2 + qx + 2 = 0\}, \ A \cap B = \left\{\frac{1}{2}\right\}, \ \ \mathcal{R}$ p, q 的值及 $A \cup B$.

- 14 数学(基础模块)练习册 第一册
- 2. 已知 $P = \{ (x, y) \mid x+2y=a \}, Q = \{ (x, y) \mid 2x-y=b \}, 若 P \cap Q = \{ (1, -1) \}, 求 a+b 的值.$

3. 若集合 $A = \{x \mid x \leq 1\}$, $B = \{x \mid x > a\}$, 且 $A \cap B = \emptyset$, 求 a 的取值范围.

● 能力提升

1. 试用阴影表示下图中 $P \cap M \cap Q$ 的集合

2. 幼儿师范教育专业一年级共有学生 165 人,其中 72 人会弹钢琴,85 人会拉手风琴,既会弹钢琴又会拉手风琴的有 12 人,则既不会弹钢琴也不会拉手风琴的有多少人?

3. 集合 $A = \{2, a\}$, $B = \{1, 2, 3, 2a+4\}$, 且 $A \cap B = \{-a^2+6a-6\}$, 求实数 a 的值.

4. 某个班的全体学生在进行了短跑、游泳、投掷三个项目的测试后,有4名学生 在这三个项目上都没有达到优秀,其余每人至少有一项达到了优秀,达到了优秀的这 部分学生情况如下表:

项目	短跑	游泳	投掷	短跑、游泳	短跑、投掷	游泳、投掷	短跑、游泳、投掷
人数	17	18	15	6	6	5	2

求这个班的学生人数.

1. 3 充要条件

- 例1 判断下列语句是否为命题,若是命题,判断其真假.
- (1) 空集是任何一个集合的真子集; (2) 集合 $A \cap B$ 是集合 A 的子集;
- (3) 明天下雨吗?
- (4) x=1 是方程 $x^2=1$ 的根.

分析: 能够判断真假的陈述句是命题, 否则不是.

- 解:(1)语句"空集是任何一个集合的真子集"是命题,但为假命题.
- (2) 语句"集合 $A \cap B$ 是集合 A 的子集"是命题,且为真命题.
- (3) 语句"明天下雨吗"不是命题,
- (4) 语句 "x=1 是方程 $x^2=1$ 的根"是命题,且为真命题.
- 例2 判断下列命题的真假.
- (1) $\text{mp} \ a \cdot b = 1$, $\text{mag} \ a = 1$. (2) $\text{mp} \ a > 3$, $\text{mag} \ a > 3$. 1.
- (3) $\text{mlt} a \cdot b > 0$, $\text{mlt} a \cdot \frac{a}{b} > 0$. (4) $\text{mlt} a^2 = 2$, $\text{mlt} a = \sqrt{2}$.

分析: 这些都是条件命题, 关键看由前面的条件是否能推出后面的结论.

解: (1) 命题"如果 $a \cdot b = 1$,那么 a = 1"是假命题.

例如,a=2, $b=\frac{1}{2}$.

(2) 如果一个数比 3 大, 它不一定比 3.1 大, 如: 3.05,

16 数学(基础模块)练习册 第一册

所以命题"如果 a>3, 那么 a>3.1"是假命题.

(3) $a \cdot b > 0$ 表明 a = b 同号,于是一定有 $\frac{a}{b} > 0$,

所以命题"如果 $a \cdot b > 0$,那么 $\frac{a}{b} > 0$ "是真命题.

(4) $a^2 = 2$ 的解为 $a = \sqrt{2}$ 或 $a = -\sqrt{2}$.

所以命题"如果 $a^2=2$,那么 $a=\sqrt{2}$ " 是假命题.

例3 ≥ 判断 p 是 q 成立的什么条件(充分不必要条件、必要不充分条件、充要条 件或既不充分也不必要条件).

(1) *p*: △为等边三角形;

q: △为等腰三角形.

(2) $p: x \cdot y = 0;$

q: y=0.

(3) $p: x=1 \le x=2;$ $q: x^2-3x+2=0.$

(4) $p: a \in \mathbb{Z};$

 $q: a \in \mathbb{N}$.

分析: 判断 $p \neq q$ 的什么条件, 关键是看 $p \rightarrow q$, $q \rightarrow p$ 及 $p \Leftrightarrow q$ 的正确性, $p \rightarrow q$ 说 明 $p \neq q$ 成立的充分条件,也说明 $q \neq p$ 成立的必要条件;

 $q \rightarrow p$ 说明 $q \neq p$ 成立的充分条件, 也说明 $p \neq q$ 成立的必要条件;

解:(1)等边三角形也一定是等腰三角形,但反过来等腰三角形不一定是等边三 角形,即 $p \Rightarrow q$,但 $q \Rightarrow p$,

所以p是q成立的充分不必要条件.

- (2) $x \cdot y = 0$ 说明 x = 0 或 y = 0, 即 $p \Rightarrow q$, 但 y = 0 一定有 $x \cdot y = 0$, 即 $q \Rightarrow p$, 所以p是q成立的必要不充分条件.
- (3) x=1 或 x=2 一定有 $x^2-3x+2=0$,反之 $x^2-3x+2=0$ 时,有 x=1 或 x=2, 即 $p \Leftrightarrow q$, 所以 $p \neq q$ 成立的充要条件.
- (4) 整数 a 不一定是自然数,如 a=-2 即 $p \rightarrow q$,但自然数 a 一定是整数,即 $q \rightarrow p$, 所以 $p \neq q$ 成立的必要不充分条件.

基础达标

一、选择题

1. 下列语句是命题的是(

A. 都不许动!

B. 明天刮风吗?

	C. 正方形四个内角和等于 360°	D.	这幅字写得真好啊!	
2.	下列命题是真命题的是()			
	A. $3^2 = 6$	В.	两个奇数之和为奇数	
	C. 15 能被 6 整除	D.	$-\frac{1}{3} > -\frac{1}{2}$	
3.	下列命题为真命题的是()			
	A. 如果 $x^2 - 3 = 0$,那么 $x = \sqrt{3}$			
	B. 如果 $x^2-3=0$,那么 $x=-\sqrt{3}$			
	C. 如果 $x^2 - 3 = 0$,那么 $x = \sqrt{3}$ 或 $x = -$	$-\sqrt{3}$		
	D. 如果 $x^2 - 3 = 0$,那么 $x = \sqrt{3}$ 且 $x = -$	-√ <u>3</u>		
4.	x>5 是 x>3 的()			
	A. 充分且不必要条件	В.	必要且不充分条件	
	C. 充要条件	D.	既不充分也不必要条件	
5.	"四条边相等"是"四边形为正方形"的	匀 (
	A. 充分且不必要条件	В.	必要且不充分条件	
	C. 充要条件	D.	既不充分也不必要条件	
6.	"两个三角形是全等三角形"是"两个三	三角	形是相似三角形"的()
	A. 充分且不必要条件	В.	必要且不充分条件	
	C. 充要条件	D.	既不充分也不必要条件	
7.	" $x \in A \perp x \in B$ " 是 " $x \in A \cup B$ " 的()		
	A. 充分且不必要条件	В.	必要且不充分条件	
	C. 充要条件	D.	既不充分也不必要条件	
8.	" $x \in A \perp x \in B$ " 是 " $x \in A \cap B$ " 的()		
	A. 充分且不必要条件	В.	必要且不充分条件	
	C. 充要条件	D.	既不充分也不必要条件	
9.	集合 A , B 满足 $A \cup B = A$ 的充要条件	夕()	
	A. <i>A⊆B</i>	В.	$B \subseteq A$	
	C. $B=A$	D.	$B \not\subseteq A$	
10	. "a=b" 是" a = b "的()			
	A. 充分且不必要条件	В.	必要且不充分条件	
	C. 充要条件	D.	既不充分也不必要条件	

二、填空题

- 2. " $\triangle ABC$ 是以/C 为直角的三角形"是" $a^2+b^2=c^2$ "的 条件.
- 3. "两个三角形的三个角对应相等"是"两个三角形全等"的 条件.
- 4. " $x^2 = y^2$ " 是 "x = y" 的 条件.
- 5. "a>0 且 b>0" 是 "a+b>0" 的 条件.

三、解答题

1. 方程 $x^2 + bx + c = 0$ 有实数根的充要条件是什么?

2. 判断 "x=0 或 y=0" 是 " $x^2+y^2=0$ " 的什么条件

能力提升

- 1. 判定下列命题中,p 是q 成立的什么条件(充分不必要、必要不充分、充要).
- (1) $p: a \cdot b \neq 0, q: a \neq 0;$ (2) $p: a < 0, q: a \leq 0;$

(3) $p: a+b=0, q: a^2+b^2=0;$ (4) $p: a+b=0, q: a^3+b^3=0.$

2. 方程 $x^2+bx+c=0$ 有两个正实数解的充要条件是什么?

第一章综合练习一

— 、	选	择题			
	1.	以下不能构成集合	合的是()		
		A. 全体长方形		B. 某学校三年	级所有学生
		C. 某班所有高个	子学生	D. 锐角三角形	的全体
	2.	已知集合 $M=\{0\}$), 1, 2}, 则 <i>M</i>	的真子集的个数	:是()
		A. 4	B. 5	C. 6	D. 7
	3.	若 $A = \{x \mid x < 2\}$	$B = \{x \mid -1\}$	$1 \leqslant x \leqslant 3$,则 A	$\cap B = ($)
		A. $\{x \mid -1 \le x < 0\}$	<2}	B. $\{x \mid -1 \le x\}$	$x \leqslant 3$
		C. $\{x \mid x \le 3\}$		D. $\{x \mid x \ge -$	1}
	4.	设全集 $U=\mathbf{R}$,集		$-\frac{1}{2}$ 》,则 $\bigcap_U A$ =	=()
		A. $\{x \mid x > \frac{1}{2}\}$		(- /
		$C.\left\{x\mid x\geqslant \frac{1}{2}\right\}$		D. $\left\langle x \mid x \leqslant -\frac{1}{2} \right\rangle$	$\left(\frac{1}{2}\right)$
	5.	集合 $A = \{x \mid x\}$	+4<0} 与集合	$B = \{x \mid \mid x \mid >$	·4》的关系是()
		$A.A \in B$	B. A = B	C. <i>A</i> ⊊ <i>B</i>	D. <i>A</i> ⊇ <i>B</i>
	6.	集合 $A = \{x \mid x$	$x \mid \langle 3, x \in \mathbf{Z} \rangle$	中的元素共有()
		A. 2 个	B. 3 个	C. 4 个	D. 5 个
	7.	若 $P = \{x \mid x < 3\}$	$\{a\}, a=2\sqrt{2}, M$	()	
		A. $a \notin P$	B. $\{a\} \in P$	C. <i>a</i> ≨ <i>P</i>	D. $\{a\} \subseteq P$
	8.	若全集 $U=\mathbf{R}$,A	$A = \{x \mid 1 \leqslant x \leqslant$	≤ 3 , $B = \{x \mid$	$3 < x \leqslant 5$,则 $\bigcap_U A \cup \bigcap_U B$
为()			
		A. R		B. Ø	

D. {3}

9. 满足 $\{a, b\} \subseteq A \subseteq \{a, b, c, d\}$ 的集合A的个数()

C. $\{x \mid x > 5$ 或 $x < 1\}$

20	数学(基础模块)約	东习册 第一册		
	A. 1	В. 2	C. 3	D. 4
	10. 集合 A 含有 10) 个元素,集合 B	含有6个元素,	集合 $A \cap B$ 含有 3 个元素,则
集台	AUB含有()			
	A. 15 个元素	B. 12 个元素	C. 14 个元素	D. 13 个元素
=,	填空题			
	1. 用适当的符号	$(\in,\ \notin,\ \subsetneq,\ =$, ⊋) 填空.	
	1 {1, 2,	3};	{a}	$\{a, b\};$
	$\sqrt{3}$ Z ;		Ø {	$x \mid x^2 + 1 = 0$.
	2. 如果 <i>M</i> = {非负	5实数}, N= {	非正实数},那么	$M \cap N = \underline{\qquad}, M \cup N = \underline{\qquad}$
	·			
	3. 已知集合 A= {	$x \mid x > 3$, $B = -$	$\{x \mid -2 \leqslant x \leqslant 5\},$	则 <i>A</i> ∩ <i>B</i> =
	4. 已知全集 <i>U</i> =	{0, 1, 2, 3, 4,	5, 6}, 集合 A	$A = \{0, 3, 5, 6\}, \ \bigcup C_U A =$
	·			
	5. 设全集 $U=\mathbf{R}$,	$A = \{x \mid 2 - x > $	0},则 C _/A =_	<u>.</u>
	6. "x>1" 是"x>	>2"的	条件(充分、必要	要、充要).
	7. "a=0 且 b=0"	是 " $a^2+b^2=0$ " 自	的条件	(充分、必要、充要).
	8. "a≠0" 是 "ab=	≠0"的	条件(充分、必	要、充要).
	9. 若集合 A= {	$(x, y) \mid x+y-$	$-3=0$, $B=$ {	$(x, y) \mid x-y-1=0$, \emptyset
$A \cap$	B=			
	10. 若 <i>A</i> = {1, 4,	$, x \}, B = \{1, x\}$	$\{x^2\}, \ \underline{\mathbb{H}} \ A \cap B = 1$	B,则 $x=$
Ξ、	解答题			

 $A \cup B$, $\bigcap_{U} A \cup \bigcap_{U} B$.

2. 设全集 $U = \{x \mid 0 < x \leq 10 \ \text{且} \ x \in \mathbf{N} \}$,集合 $A = \{1, 2, 4, 5, 9\}$,集合 $B = \{1, 2, 4, 5, 9\}$ $\{4, 6, 7, 8, 10\}$, 集合 $E = \{3, 5, 7\}$, 求 $(A \cap B) \cup E$, $(C_UA \cap C_UB) \cup C_UE$.

3. 已知集合 $A = \{a^2, a+2, -5\}$, $B = \{10, 3a-5, a^2+3\}$, 且 $A \cap B = \{-5\}$, 求实数 a.

4. 设集合 $A = \{x \mid 1 < x < 2\}$, $B = \{x \mid x - a < 0\}$,若 $A \subseteq B$,求实数 a 的取值范围.

5. 设 $A = \{x \mid -7 \leqslant x \leqslant 4\}$, $B = \{x \mid 3a - 1 \leqslant x \leqslant 3a + 1\}$,且 $B \subseteq A$,求实数 a 的取值范围.